

Aeroacoustic Predictions for a Lift-Offset Coaxial Rotor and

Zhongqi (Henry) Jia
Computational Flow Physics and Aeroacoustics Lab
Department of Mechanical and Aerospace Engineering
University of California, Davis

Advanced Modeling & Simulation (AMS) Seminar Series NASA Ames Research Center, December 10, 2020

UCDAYS UNIVERSITY OF CALIFORNIA

Outline

- Self Introduction
- Part 1: Lift Offset Coaxial Rotor
 - Introduction
 - Methods
 - Results
 - Summary
- Part 2: Urban Air Mobility Aircraft
 - Introduction
 - Methods
 - Results
 - Summary

Self Introduction

- 5th year Ph.D. candidate from UC Davis
 - Applied aerodynamics and aeroacoustics
 - Advised by Professor Seongkyu Lee
- Previous work/research experiences
 - 2016 NASA's MARTI (NASA Academy) program, NASA Ames
 - 2017 to 2020 summer internships at Army's Technology Development Directorate (TDD), Moffett Field
- Awards
 - 2019 Ph.D. and 2017 M.S. Vertical Flight Foundation scholarships
 - 2018 Joseph Steger Fellowship
 - 2017 N&M Sarigul-Klijn Flight Research Fellowship
 - 2016 MAE Department Fellowship

Self Introduction

- Vertical Lift Research Center of Excellence (VLRCOE) project collaboration with Penn State
 - Task: Fundamental Aeroacoustics of Lift-Offset Coaxial Helicopter Rotors

UC Davis

Ph.D. Candidate Zhongqi (Henry) Jia

Professor Seongkyu Lee

Penn State

Ph.D. Candidate Kalki Sharma

Professor Kenneth S. Brentner

Self Introduction

 Aerodynamics and aeroacoustics of multi-rotor Urban Air Mobility (UAM) vehicles

NASA's One-Passenger Quadrotor

NASA's Six-Passenger Quadrotor

NASA's Six-Passenger Side-by-Side Rotor

Courtesy of Dr. Johnson and Chris Silva from Rotorcraft Aeromechanics, NASA Ames

Part 1: Lift Offset Coaxial Rotor

Introduction: Motivation

- A lift-offset coaxial rotor is considered for the nextgeneration rotorcraft
- Adopted the Advancing Blade Concept (ABC) from the Sikorsky XH-59A
- Potential noise issues due to mutual interactions between the upper and lower rotors
- Fundamental understanding of interactional aerodynamics and acoustics is critical

Sikorsky XH-59A

Sikorsky & Boeing SB>1 Defiant
Ref: Sikorsky photo gallery & archives

Introduction: Lift Offset

- Lift-offset (LO): the shift of integrated lift toward the advancing side of the rotor disk
- Each rotor carries a rolling moment of equal magnitude and opposite direction
- Mathematical expression:

$$LO = \frac{\Delta M_X}{T \cdot R}$$

Introduction: Literature Review

- Parallel rotor-to-rotor blade vortex interaction (BVI) noise of a lift-offset rotor at low speed [Kim, H. W., et al., 64th AHS Annual Forum, 2008]
- BVI-like pressure pulses being identified for a lift-offset coaxial rotor [Walsh, G., et al., 72nd AHS Annual Forum, 2016]

Ref: Kim, H. W., et al., 64th AHS Annual Forum, 2008

Ref: Walsh, G., et al., 72nd AHS Annual Forum, 2016

Introduction: Research Objectives

- Predict the acoustics of a lift-offset coaxial rotor in high-speed forward flight based a high-fidelity CFD/CSD loose coupling approach
- Identify the noise sources of a lift-offset coaxial rotor
- Perform parametric studies: flight speed, lift-offset value, rotor-to-rotor separation distance, and vehicle pitch attitude
- Correlate rotor acoustics with vehicle performance for the lift-offset coaxial rotor
- Investigate the interactional acoustics of a fullconfiguration coaxial model

Methods: Aircraft Model

Aircrat model: the Sikorsky XH-59A

Main Rotor Properties	Descriptions	
Blades Per Rotor	3	
Rotor Radius (ft)	18 ft (5.5 m)	
Nominal Rotor Speed	345 RPM	
Nominal Tip Speed	650 ft/sec (198 m/s)	

Sikorsky XH-59A

Propeller Properties	Descriptions
Number of Blades	5
Rotor Radius (ft)	3.6 ft (1.1 m)
Nominal Rotor Speed	2068.4 RPM
Nominal Tip Speed	775 ft/sec (236.1 m/s)

Full Configuration CFD Model

Methods: Aircraft Model

The four CFD models:

Isolated coaxial rotor (without the hub)

Fuselage case

Isolated coaxial rotor (with the hub)

Full configuration case

Methods: CFD Software

Software: HPCMP CREATE™-AV Helios

Sitaraman et al., "Progress in Strand/Cartesian Overset CFD Simulations Using CREATE™—AV Helios", NASA Ames Seminar, May 25, 2017

Methods: CFD Mesh

Near-Body Grids (Chimera Grid Tools)

Rotor blade 5M grids/blade

Propeller blade 1.9M grid pts/blade

Initial wall spacing: $5x10^{-6}$ ft for a dimensionless wall distance y + = 1.0

Rotor hub (1.8M)

Fuselage (3.8M)

Off-Body Grids (SAMCart)

- Far-field dimension: 20 rotor radii
- 8 levels of Adaptive Mesh Refinement
 w/ Level-1 spacing = 10% C_{tip}
- Total: 102 M grid pts (1st time step)

Methods: CFD Setup

Summary (Helios Simulations):

Input Parameters	Near-Body Grid	Off-Body Grid
CFD solver	OVERFLOW	SAMCART
Spatial scheme	5th order	5th order
Temporal scheme	2nd order	2nd order
Time step size	0.25°	
Turbulence Model	SA-DES	
Frequency of blade surface output	0.50° (every two time steps)	

- CFD/CSD loose coupling at every half rotor rev/180° after the first rotor rev
- Full configuration case: every rotor rev/360°

Methods: CFD/CSD Setup

- CFD/CSD loose coupling between OVERFLOW and RCAS
- The CFD/CSD flow chart:

Methods: Acoustics Prediction

PSU-WOPWOP

- Numerically solves Farassat's Formulation 1A of the Ffowcs Williams and Hawkings (FW-H) equation
- Impermeable surface strategy is used (the quadrupole source term is neglected)

$$p'(\vec{x},t) = p'_T(\vec{x},t) + p'_L(\vec{x},t)$$

- 1. The Doppler amplification factor $1/(1-M_r)$ in each term
- 2. Change of blade surface loading with respect to change of acoustic source emission time or retarded time \dot{l}_r

$$\int_{f=0}^{r} \left[\frac{p_o v_n (r \dot{M}_r + c (M_r - M^2))}{r^2 |1 - M_r|^3} \right]_{ret}^{r} dS$$

$$4\pi p'_L(\vec{x}, t) = \frac{1}{c} \int_{f=0}^{r} \left[\frac{\dot{l}_r}{r |1 - M_r|^2} \right]_{ret}^{r} dS + \int_{f=0}^{r} \left[\frac{l_r - l_M}{r^2 |1 - M_r|^2} \right]_{ret}^{r} dS + \frac{1}{c} \int_{f=0}^{r} \left[\frac{l_r (r \dot{M}_r + c (M_r - M^2))}{r^2 |1 - M_r|^3} \right]_{ret}^{r} dS$$

 $4\pi p'_{T}(\vec{x},t) = \int_{f=0}^{\infty} \left[\frac{\rho_{o}(\dot{v}_{n} + v_{\dot{n}})}{r |1 - M_{r}|^{2}} \right]_{m} dS +$

Results: Power validation

- Simulated at 100, 150, 200 knots in forward flight (3,000 ft altitude) with zero vehicle pitch attitude
- Vehicle power validation (assuming LO = 0.2)

Results: Lift-Offset Coaxial Rotor UCDAVIS

Aerodynamic interactions at 150 knots (LO = 0.2)

Iso-surface of q-criterion colored by vorticity magnitude

• Azimuthal derivative of sectional normal force (\dot{l}_r) for the three speed cases (zero vehicle pitch attitude &

Loading Noise Acoustic Pressure (p'_L)

 Single rotor (isolated upper rotor) vs. upper of the coaxial rotor at 100 knots

- Effect of flight speed
- Comparison of mid-frequency SPL

• Azimuthal derivative of sectional normal force (l_r) at 150 knots (three vehicle pitch attitude (α) cases)

• Parallel rotor-to-rotor BVI at $\alpha = -5^o$ (150 knots)

Loading Noise Acoustic Pressure (p'_L) at 150 knots

- A comparison of mid-frequency sound pressure level at 150 knots
 - Computed between the 10th and 50th blade harmonics

- A comparison of mid-frequency sound pressure level at 200 knots
 - Computed between the 10th and 50th blade harmonics

- Power Performance
 - At high speed, $\alpha = 5^o$ shows better power and acoustic performance
 - $\alpha = 5^o$ shows the lowest mid-frequency SPL at 200 knots

- Effect of the lift offset value (LO) at 100 knots
- Comparison of mid-frequency SPL

- Effect of rotor-to-rotor separation distance at 150 knots
- Comparison of mid-frequency SPL

- Hemispherical observer-grid simulation (10R)
- Computed rotor noise only

Isolated Rotor Case

Fuselage Case

80.6 dB

Full Config Case

Min: 79.3 dB

Max: 104.1 dB

Max: 105.6 dB

Min:

Min: 79.7 dB

Max: 106.6 dB

Summary of Results: Lift-OffsetCoaxial Rotor

- BVI and blade-crossover events are the most dominant aerodynamic interactions of a lift-offset coaxial rotor.
- The lift-offset coaxial rotor showed higher midfrequency SPL at a negative pitch attitude, higher speed, higher LO, and lower rotor separation distance.
- Significant improvement in rotor acoustics and vehicle power performance at a positive pitch attitude.
- Full-configuration model showed higher noise than that of the isolated coaxial rotor model.

Part 2: Urban Air Mobility Aircraft

Introduction: UAM vehicles

- Hybrid or fully-electric vertical take-off and landing (VTOL) aircraft become increasingly popular
- The concept of Urban Air Mobility (UAM)
 - Provide green, efficient, safe, and affordable urban air transportation
 - Alleviate traffic congestion
 - Interconnect urban and suburban areas
- UAM aircraft designs feature multi-rotors and fixed wings

Ref: DaSilva, J. L., "Traffic Consistently Bad in Bay Area", The Pioneer, Oct. 2nd, 2017

Hyundai's Full-Scale Air Taxi Concept

Ref: https://evtol.news/2020/01/06/uber-and-hyundai-motor-announce-partnership/

Introduction: UAM vehicles

- Both aerodynamics and acoustics of multi-rotor configurations could be significant different from that of conventional helicopters
- Noise is a potential barrier to public acceptance
- Uber's guidelines:
 - 15 dB lower than similar-sized helicopter noise (Ref: Hayes and Stevenson, UAS Traffic Management News, 2019)
 - Less than 67 dB (A-weighted) from the ground level at 250 ft (76 m) (Ref: Holden and Goel, Uber Elevate, 2016)

NASA's Side-by-Side Rotor Configuration

Courtesy of Dr. Johnson and Chris Silva from Rotorcraft Aeromechanics, NASA Ames

Introduction

- Ventura Diaz et al. (2019 VFS Forum) showed rotor-to-rotor BVI could be a potential noise source of a side-by-side rotor
- Sagaga and Lee (2020 AIAA Aviation Forum) demonstrated that hover performance of a sideby-side rotor could be reduced with increasing rotor overlap
- Li and Lee (2020 VFS SJ Forum) calculated broadband noise of a quadrotor UAM vehicle design based on UCD QuietFly and demonstrated its importance at high frequency
- Thai et al. (2020 VFS SJ Forum) demonstrated a multi-rotor trim loose coupling approach for IJAM aircraft simulations

Very limited research and understanding of UAM aircraft noise and its impact on community.

Ref: Thai (2020 VFS SJ Forum)

Ref: Ventura Diaz et al. (2019 VFS Forum)

Ref: Sagaga and Lee (2020)

AIAA Aviation Forum)

Introduction: Research Objectives

- Simulate UAM aircraft acoustics based on a highfidelity CFD approach with prescribed rotor motions.
- Identify potential acoustic sources of the selected multi-rotor UAM aircraft models.
- Perform parametric studies (e.g., rotor-to-rotor overlap).
- Compare the UAM aircraft noise with conventional helicopter noise and various background noise levels (e.g., freeway noise).

UCDAYS UNIVERSITY OF CALIFORNIA

Methods: Aircraft Models

- NASA's 1-passenger quadrotor
- NASA's 6-passenger quadrotor
- NASA's 6-passenger side-by-side rotor (0%, 5%, 15%, and 25% overlap)

Properties	1-Passenger Quadrotor	6-Passenger Quadrotor	6-Passenger Side- by-Side Rotor
Number of Rotors	4	4	2
Rotor Radius (ft)	6.5	13.1	10.5
Nominal RPM	662	400	499
Payload (lb)	220	1,200	1,200

Methods: CFD Mesh

- Near-body:
 - Overset structured mesh generated using Chimera Grid Tools

	Chordwise	Spanwise	Normal	Total/Blade
Side-by-Side	265	168	65	3.0 M
1-Pass Quad	239	171	65	3.6 M
6-Pass Quad	239	171	65	3.6 M

Off-body:

• 8 levels adaptive mesh refinement (AMR) with the finest wakegrid spacing equal to 10% $C_{\rm tip}$

Methods: CFD Setup

Summary (Helios simulations):

Input Parameters	Near-Body Grid	Off-Body Grid	
CFD solver	OVERFLOW	SAMCART	
Spatial scheme	5th order	5th order	
Temporal scheme	2nd order	2nd order	
Time step size	0.25°		
Turbulence Model	SA-DES		
Frequency of blade surface output	0.50° (every two time steps)		

- UAM vehicle trim: prescribed motion
- Simulations converged after 5 rotor revolutions

Performed forward flight simulations at 70 knots and an altitude of 5,000 ft

• Iso-surface of q-criterion colored by vorticity magnitude 3. Fuselage for the one-passenger case

 Comparison azimuthal derivative of sectional normal force at 75% span

Comparison of overall sound pressure level (OASPL)

 Decomposition of the vehicle noise for the onepassenger full configuration case.

UCDAYS UNIVERSITY OF CALIFORNIA

Results: Quadrotors

 Comparison against similar-sized conventional helicopter noise

 Comparison against the background noise data measured by Begault (NASA Ames) in the Bay Area, CA

Summary of Results: Quadrotors

- BVI is the most dominant noise source of the selected quadrotor UAM aircraft.
- The six-passenger quadrotor with higher payload shows higher overall sound pressure level than the one-passenger quadrotor
- The six-passenger quadrotor is only 10 dB quieter than the conventional helicopter Bell 430. A goal of 15 dB quieter than similar-sized conventional helicopter noise is still challenging.
- The six-passenger quadrotor noise could not be completely masked by the highway noise level even at altitude of 1,000 ft. Noise in low-altitude operations could be a potential concern.

Results: Side-by-Side Rotor UCDAVIS

- · Simulations performed at 115 knots and an altitude of 5,000 ft
- A total of four overlap cases are considered: 0%, 5%, 15%, and 25%

Comparison of the azimuthal derivative of sectional

Acoustics simulation performed on a hemispherical grid with a

radius = 10R

Comparison of OASPL from the Top View

Noise source identification

Loading noise at the max OASPL location

 Comparison against similar-sized conventional helicopter noise

- Comparison against the background noise data measured by Begault (NASA Ames) in the Bay Area, CA
- 0% overlap case:

Summary of Results: Side-by-Side Rotor

- BVI events, particularly the rotor-to-rotor BVI events, are the most dominant noise sources.
- Rotor noise increases with increasing rotor overlap.
- The side-by-side rotor with 25% overlap is only 5 dB quieter than the conventional helicopter. The noise guideline of 15 dB quieter than similar-sized helicopter noise could not be met.
- The side-by-side rotor noise with 0% overlap has partially exceeded the freeway noise level even at an altitude of 1,500 ft. Noise reduction technology should be pursued.

Acknowledgements

- My advisor Seongkyu Lee for offering the great opportunity and insightful guidance
- Kalki Sharma and Ken Brentner at Penn State for internal discussions and useful inputs
- Roger Strawn from the Army Technology Development Directorate (TDD) for providing the summer internships and DoD's HPC resources
- Mark Potsdam, Jain Rohit, and Roget Beatrice from TDD for their assistance on CFD/CSD modeling
- Neal Chanderjian and Ahmad Jasim for their advice on CFD modeling
- PhD committee members for reviewing my thesis work
- This research was partially funded by the VLRCOE program under Agreement No. W911W6-17-2-0003.

Thank You Questions?

